

From Machine Learning to Artificial Intelligence for Industrial Applications

Dr. Maurizio Rovaglio Head of Digital Enterprise Business for Process Industry – Siemens SPA – Italy

© Siemens 2020

siemens.com

Agenda

1	Equipment Predictive Analytics (EPA)	
2	EPA approach	
3	EPA plus AI (Case Based Reasoning / NLP)	
4	Few Case Studies	
5	Short Video	
6	Recap and Takeaways	

Value of more production vs. value of maintenance saving

What is Predictive Analytics?

Artificial Intelligence Program that can sense, reason, act, adapt

Machine Learning Program that improves as soon as it is exposed to more data

> **Deep Learning** Program that learns based on multilayer neural networks

1. Historical behavior - Understand the "pattern"

2. Current behavior

Apply the "pattern" and raise conclusions

Create new "pattern" based on current behavior

Philosophy of Equipment Predictive Analytics

Identify target sensors (most important sensors) and their correlated sensors.

Identify **correlations between the sensors** by correlations coefficients based on historical data and domain knowhow.

EPA first step should provides a matrix/plot of correlation coefficients.

Model training of target sensors

Training based on **normal behavior data**.

EPA should provides easy tools to retrieve plant data, select ranges and train/update the model as required.

SIEMENS Ingenuity for life

Monitoring target sensors on dashboard

Alerts arising as soon as the actual behaviour differs from the normal behaviour.

Therefore EPA provides the daily and hourly alerts.

Identify Target Sensors and their Correlations

Model Training of Target Sensors

Monitoring Target Sensors

Ingenuity for life SIEMENS Ingenuity for life

SIEMENS

Integration of Data Driven and Knowledge Driven Approach

Data Driven Analytics

Knowledge Based Analytics

		_	A	١r	10	D	n	а	l	е	S		_
Effects	Insufficient Discharge Pressure	Intermittent Operation	Insufficient Capacity	No Liquid Delivery	High Bearing Temperatures	Short Bearing Life	Short Mechanical Seal Life	High Vibration	High Noise Levels	Power Demand Excessive	Motor Trips	Elevated Motor Temperature	Elevated Liquid Temperature
Bent Shaft					•	•	•	•		•			
Casing Distorted from Excessive Pipe Strain					٠	٠	٠	٠		٠		٠	
Cavitation	٠	٠	•	٠	٠		•	٠	٠				٠
Clogged Impeller	•		•	٠				•		٠			
Driver Imbalance						٠	٠	٠					
Electrical Problems (Driver)						•	•	•		٠	٠	٠	
Entrained Air (Suction or Seal Leaks)	٠	٠	٠					٠	٠			٠	
Hydraulic Instability					٠	٠	٠	٠	٠				
Impeller Installed Backward (Double-Suction Only)	•		٠							٠			
Improper Mechanical Seal							٠						
Inlet Strainer Partially Clogged	•		٠					٠	٠				٠
Insufficient Flow through Pump													٠
Insufficient Suction Pressure (NPSH)	•	٠	•	٠				٠	٠				
Insufficient Suction Volume	•	٠	٠	٠	٠			٠	٠				٠
Internal Wear			•							•			

Natural Language Processing

Industry challenges

• High efficiency and "squeezing iron" by more than 100% capacity

EPA solution

- Interactive machine learning tool
- Correlation calculation and EPA models for Rotating machines
- Risk pre-alert via historical-data-based model training and real-time data analysis
- NLP-based smart diagnosis for know-how/experience consolidation

Benefits

- Increased plant uptime through avoidance of shut-downs by prealerting on failures.
- Higher operation efficiency through predictive monitoring.

EPA Use Case in Petrochemicals Advanced compressor monitoring

EPA reference case in Cement

SIEMENS Ingenuity for life

Industry Challenge:

- Crust
- Stack of materials
- Blockage

EPA Solution:

- **Risk Pre-alert and Prediction:** Apply EPA models trained by industrial big data collected from onsite sensors
- Smart Diagnosis:

Apply NLP (Natural Language Processing) technology to match similar historical cases (failure/maintenance report) to support decision making

Benefits

- Increased plant uptime through avoidance of shut-downs by pre-alerting on failures.
- **Higher operation efficiency** through predictive monitoring.

Chem. Eng. in the Plant of the Future, 4 Sept 2020

EPA Cement Use Case 1: Crust Risk in Pre-heater

2019-07-18 09:22:00

- Target Sensor: Temperature of C5A Entrance in Pre-Heater
- First high-risk alert in EPA at 7:00
- DCS alarm (lead to unplanned shut-down of kiln product) at 9:22

SIEMENS

EPA Cement Use Case 2 : SIEMENS 2018-11-21 21:30:00 **Material Blockage in Pre-heater** Ingenuity for life 493 actual value estimation -600 fault 😑 alarm **Tolerance band** confidence interval -800 -1000Around 2.2 hours earlier prediction -140011-21 12 11-21 00 11-21 03 11-21 06 11-21 09 493 Zoom in actual value estimation -600 fault 😑 alarm confidence interva -800 -1000-1200 Sensor value -140021 19:00 21 19:30 21 20:00 21 20:30 21 21:00 21 21 30 19:20 21:30 Estimated value

- Target Sensor: Pressure of C5A exit in Pre-Heater
- First high-risk alert in EPA at 19:20
- DCS alarm (lead to unplanned shut-down of kiln product) at 21:30

VIDEO (https://www.youtube.com/watch?v=SoXAz47hq8g&t=6s)

Onshore	Offshore	Chemicals	Petrochemical
🖬 Aliso Viejo	🖬 Eagle	🖿 Berlin	🖿 Alianza
Lalita	🖬 Jaguar	🖬 Erlangen	🔤 Bolivar
I Dana Point	🔤 Lion	🖬 Genoa	🖿 Colo-Colo
🖬 Laguna	Packer	Hannover	Flamengo
Mission	Saint	Karlsruhe	🖬 Millonarios
In Newport	🖿 Texan	Munich	🖬 Olimpia
🖿 Playa Vista	🖛 Titan	III Prague	ExerPlate
🖬 San Juan	Im Cowboy	III Rotterdam	🖬 Santos

Recap and Key Takeaways

✓ EPA approach require efforts

✓ EPA provides ALERTS but with no knowledge

✓ AI knowledge based algorithms enhance EPA use

✓ False positive must be addressed

✓ Large Improvement of operation efficiency

THANK YOU!